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1 Supplementary Note 1: Training details.32

Training dataset. We used 20000 images from ImageNet and Pascal VOC datasets, then each pair33

of them was combined randomly to make up 10000 complex-domain images. Specifically, two34

images in each pair were first resized to 256×256 pixels as the amplitude and phase, respectively.35

The synthesized complex-domain image can be indicated as36

s(x′, y′) = A(x′, y′) · ejϕ(x′,y′), (S1)

where A is the amplitude image, ϕ presents the phase image. The coordinates in the sample plane,37

pupil plane and camera plane are indicated as (x′, y′), (u, v) and (x, y), respectively.38

Then, we added multi-source noise to the real and imaginary parts of the clear complex-39

domain images with a random shuffle strategy. The noisy image is modeled as40

snoisy(x
′, y′) = sR + j ∗ sI + ωR + j ∗ ωI , (S2)

where sR, sI are the real and imaginary parts of the clear image, ωR and ωI are the real and41

imaginary parts of the multi-source noise. Finally, the noisy image snoisy(x′, y′) was resized to42

512× 512 pixels to simulate the super-resolution reconstruction noise.43

Noise map. The noise map was a quantified index controlling the denoising degree and details44

maintaining. A larger noise map corresponds to more smooth results. Because the Gaussian noise45

can be quantified and was certainly added to the training data, thus we employed Gaussian noise46

variance as the noise map value. In our training, the noise map was padded to the same size as the47

input complex-domain images and put into the network as another channel.48
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Figure S1: Noise model and parameters for constructing training data.

The generalized complex chain rule for a real-domain loss function. Assuming that L is a real-49

domain loss function, and Z = ZR + j ∗ ZI is a complex value. The generalized complex chain50

rule is51

∇L(z) =
∂L

∂z
=

∂L

∂ZR
+ j

∂L

∂ZI
= < (∇L(z)) + i= (∇L(z)) . (S3)
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2 Supplementary Note 2: Regularization optimization framework for ptychographic recon-52

struction.53

Theory derivation. Recently developed regularization optimization frameworks in computer vi-54

sion show great advantages for image reconstruction 32,33. We introduced the reported CI-CDNet55

technique and other comparison algorithms as the prior regularization terms during the iterations.56

Considering the computational complexity, reconstruction quality and generalization, we em-57

ployed the efficient generalized-alternating-projection (GAP) framework which has been applied58

for large-scale phase retrieval tasks in our previous work 33. Specifically, the reconstruction of pty-59

chography (Fourier ptychographic microscopy and lensless coded ptychography) can be modeled60

as a generalized optimization function61

ŝ = argmin
s
f(s) + g(s), (S4)

where s is the reconstruction objective, f(s) is the data fidelity term and g(s) is the prior regular-62

ization term. Following the GAP framework, with a introduced auxiliary variable κ, Eq. (S4) can63

be derived as64

(s, κ) = argmin 1/2‖s− κ‖22 + ηg(κ)

s.t. I = |As|2,
(S5)

where κ is an auxiliary variable, η is a weight coefficient to balance the data fidelity term and prior65

regularization, A denotes the forward model, and I represents intensity-only measurements. Then,66

Eq. (S5) can be solved by the following two subproblems.67

• Solving s: given κ(k), s(k+1) is updated via a Euclidean projection of κ(k) on the manifold68
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I = |As|2 as69

sk+1 = κ(k) + η · PR
(
I − |Aκ|2

)
, (S6)

where PR is a phase retrieval solver. We employ the alternating projection (AP) framework70

as this solver due to its great generalization and low computational complexity. It alternates71

between the object and imaging planes and imposes constraints.72

• Updating κ: given s(k+1), κ(k+1) is updated by different denoising solvers as73

κk+1 = DE
(
sk+1

)
. (S7)

After initialization, the variables are updated alternatively following Eq. (S6) and Eq. (S7).74

Since both the two solvers PR and EN are highly efficient and flexible, the entire reconstruc-75

tion maintains low computational complexity and strong generalization. We summarized the re-76

construction algorithms of Kramers-Kronig-relations holography (KKR), Fourier ptychographic77

microscopy (FPM) and lensless coded ptychography (LCP) in Algorithm 1, Algorithm 2 and Al-78

gorithm 3, respectively.79
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Algorithm 1: KKR reconstruction with CI-CDNet.
Input: Intensity-only measurements Ii, Scanning aperture D(u− ui, v − vi).

Output: Recovered wavefront s.

1 ri = e−j(ui·x+vi·y) . Hypothetical reference waves

2 Hi = −j sgn (vi) · sgn(v) . Defined Hilbert Kernels

3 X = ln [F−1 {Si} /ri] . Create a analytic function

4 Re{X} = 1
2
ln
[
Ii/ |ri|2

]
. Recover the real part of X

5 Im{X} = F−1 {F{Re{X}} ·Hi} . Recover the imaginary part of X

6 Si = F
{
eRe{X}+j Im{X} · ri

}
. Recover the subregions of Fourier spectrum

7 S =
∑4

i=1 Si/
[∑4

i=1D (u− ui, v − vi) + ε
]

. Recover the available Fourier spectrum by aperture synthesis

8 s = F−1 {S}

9 s← CI-CDNet[s]
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Algorithm 2: FPM reconstruction with CI-CDNet regularizer.
Input: Intensity-only measurements I , Initialization s0 (κ0 = s0),

Coherent transfer function C, Forward model A.

Output: High-resolution wavefront s.

1 For k = 1, 2, . . . ,do

2 I(k) = I − |Aκ(k)|2

3 S(k) = F{s(k)}

4 For i = 1, 2, . . ., do

5 Li ← S
(k)
subregion(ul : uh, vl : vh) . Sub-region in Fourier plane

6 li = F−1{C � Li}

7 l′i =

√
I
(k)
i � li

|li| . Update wavefront with intensity constraint

8 L′i = F{l′i}

9 S(k)(ul : uh, vl : vh)← L′i . Fourier plane synthesis

10 End

11 s
(k)
update = F−1{S(k)}

12 s(k+1) = κ(k) + η · s(k)update

13 κ(k+1) ← CI-CDNet[s(k+1)]

14 End

8



Algorithm 3: LCP reconstruction with CI-CDNet regularizer.
Input: Intensity measurements I , Initialization sample s0 and diffuser D0,

Propagation function PSF (d), Propagation distance d1 and d2,

Forward model A.

Output: High-resolution wavefront s and diffuser’s profile D.

1 For k = 1, 2, . . . ,do

2 I(k) = I − |Aκ(k)|2

3 W = s(k) ∗ PSFfree(d1) . Propagation d1 to diffuser plane

4 For i = 1, 2, . . ., do

5 Wi ← W (u+ ui, v − vi) . Wavefront shift

6 φi = Wi �D . Diffuser modulation

7 ψi = φi ∗ PSFfree (d2) . Propagation d2 to imaging plane

8 ψ′i =

√
I
(k)
i �

ψi
|ψi| . Update wavefront with intensity constraint

9 φ′i = ψ′i ∗ PSFfree (−d2) . Propagation −d2 to diffuser plane

10 W = W +
conj(D)�[φ′i−φi]

(1−α1)|D|2+α1|D|2max

. Updata wavefront

11 D = D +
conj(W )�[φ′i−φi]

(1−α2)|W |2+α2|W |2max

. Updata diffuser

12 W ← Wi (u− ui, v + vi) . Wavefront shift back

13 End

14 s
(k)
update = W ∗ PSFfree(−d1) . Propagation −d1 to sample plane

15 s(k+1) = κ(k) + η · s(k)update

16 κ(k+1) ← CI-CDNet[s(k+1)]

17 End
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3 Supplementary Note 3: Principle and setups of different coherent imaging modalities.80

Kramers-Kronig-relations holography. The principle of aperture modulation Kramers-Kronig-81

relations (KKR) holography is presented in Fig. S2. In order to satisfy the analyticity 36, we used82

a circular binary aperture D(u, v) to scan in the Fourier plane, as shown in the first line of Fig. S283

(b). A spatial light modulator (SLM) was employed to generate the modulation aperture, and the84

aperture’s edge strictly crosses the objective pupil center. We implemented modulation four times85

to ensure the whole objective numerical aperture (NA) is covered. The available spectrum in the86

Fourier plane is87

S(u, v) = F {s (x′, y′)} · C(u, v), (S8)

where S is the available Fourier spectrum, s is the sample, C is the coherent transfer function andF88

presents the 2D Fourier transform. Then, the intensity-only measurements I in the imaging plane89

can be modeled as90

Ii(x, y) =
∣∣F−1 {S(u, v) ·D(u− ui, v − vi)}

∣∣2 , (S9)

where D(u − ui, v − vi) is the scanning aperture (i = 1, 2, 3, 4) and F−1 presents the 2D inverse91

Fourier transform.92

The complex wavefront S(u, v) can be recovered using the four measurements. Specifically,93

the hypothetical reference waves were first generated by94

ri(x, y) = F−1 {δ (u+ ui, v + vi)} = e−j(ui·x+vi·y), (S10)

where δ(u+ui, v+ vi) is the Dirac delta function. We defined Hilbert kernels which depend on the95
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Figure S2: Principle of aperture modulation Kramers-Kronig-relations holography. (a) System di-

agram and setups. (b) Aperture modulation strategies (first line), intensity-only measurements cor-

responding to different subregions (second line) and Fourier spectrums of different measurements

(third line).

positions of the scanning aperture96

Hi(u, v) = −j sgn (vi) · sgn(v), (S11)

where sgn(v) is the sign function. Then, an intermediate variable X is defined as97

X = ln
[
F−1 {Si (u+ ui, v + vi)} /ri(x, y)

]
. (S12)
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We can recover the real part of X using the measurements I and hypothetical reference98

waves r. Its imaginary part can be obtained using Kramers-Kronig relations and the defined Hilbert99

kernels.100

Re{X} = 1

2
ln
[
Ii(x, y)/ |ri(x, y)|2

]
Im{X} = F−1 {F{Re{X}} ·Hi(u, v)} .

(S13)

Then, the shifted spectrum subregions Si (u+ ui, v + vi) can be recovered using the interme-101

diate variable X and hypothetical reference waves r102

Si (u+ ui, v + vi) = F
{
eRe{X}+j Im{X} · ri(x, y)

}
. (S14)

Finally, the sample’s Fourier spectrum can be recovered through the synthetic aperture technique103

S(u, v) =
4∑
i=1

Si(u, v)/

[
4∑
i=1

D (u− ui, v − vi) + ε

]
, (S15)

where ε = 10−5 is a small constant for numerical stability. The recovered sample s(x′, y′) is the104

inverse Fourier transform of S(u, v).105

Fourier ptychographic microscopy. Figure S3 (a) represents the schematic diagram of Fourier106

ptychographic microscopy. Assuming that the incident light through the sample is a plane wave,107

thus the light field transmitted from the sample can be described as s(x′, y′)e(jx
′ 2π
λ

sin θx′ ,jy
′ 2π
λ

sin θy′),108

where s(x′, y′) is the sample, λ is the wavelength, and θx′ and θy′ are the illumination angles. Then109

the light wave interacts with the pupil in the Fourier plane, which can be expressed as110

C (u, v) · F
(
s(x′, y′)e(jx

′ 2π
λ

sin θx′ ,jy
′ 2π
λ

sin θy′
))

. (S16)

Then, the light wave passed through a tube lens to the imaging plane, and a detector captured111
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Figure S3: Principle of Fourier ptychographic microscopy (FPM). (a) Schematic diagram and se-

tups. (b) FPM reconstruction principle.

the light’s intensity. The final formation of FPM can be indicated as112

I(x, y) =
∣∣∣F−1 [C (u, v) · F

{
s(x′, y′)e(jx

′ 2π
λ

sin θx′ ,jy
′ 2π
λ

sin θy′)
}]∣∣∣2

=

∣∣∣∣F−1 [C (u, v) · S
(
u− 2π

λ
sin θx′ , v −

2π

λ
sin θy′

)]∣∣∣∣2 . (S17)

The FPM reconstruction is a phase retrieval task. We employed the alternating projection113

(AP) algorithm as the baseline, as shown in Fig. S3 (b). AP started with an initial guess, then114

alternates between the Fourier plane and detector plane to impose constraints. The final available115

Fourier spectrum is the synthesis of multiple lowpass spectrums.116
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Lensless coded ptychography. Lensless coded ptychography (LCP) combines blind ptychogra-117

phy and scattering multiplexing techniques. LCP has two significant advantages. First, the diffuser118

encodes the high-frequency information to the measurements through scattering multiplexing. The119

final achievable resolution is not limited by the optical elements (e.g. pixel size of the detector), but120

by the feature size of the diffuser. Second, LCP is a low-cost technique to realize super-resolution121

coherent imaging, without any expensive modulators (spatial light modulators or digital mirror122

devices). The forward model of the LCP platform can be expressed as123 
W = s (x′, y′) ∗ PSFfree (d1)

Ii = |[Wi (u+ ui, v − vi)�D] ∗ PSFfree (d2)|2
(S18)

where s(x′, y′) is the exit wavefront of the sample plane, PSFfree(d) denotes the point spread124

function for free space propagation over distance d, W is the wavefront in the diffuser plane and125

W (u+ui, v−vi) presents the wavefront shift, D is the diffuser’s profile, Ii is the ith (i = 1,2,. . . ,I)126

intensity measurements, ∗ represents the convolution operation and � represents Hadamard prod-127

uct.128

The conventional LCP reconstruction method is based on the ePIE technique which is follow-129

ing the AP framework, as shown in the inner loop of Algorithm 3. It started with a high-resolution130

initial wavefront, then propagates to the diffuser plane (line 3) and shifts the wavefront (line 5).131

After the diffuser’s modulation (line 6), the wavefront propagates to the imaging plane (line 7) and132

imposes intensity constraints (line 8). Then, the wavefront propagates to the diffuser plane again133

and updates the wavefront and diffuser using line 10 and line 11. Finally, the wavefront is shifted134

back (line 12) and propagates back to the sample plane (Line 14).135
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Figure S4: Principle of lensless coded ptychography (LCP). (a) Positions of the sample’s shifts

under different data volumes. (b) Reconstructed diffuser’s profile under different data volumes.

Scattering layer preparation. We employed glass-etching chemicals to create a cover slip. This136

involved applying a solution comprising 17% barium sulfate, 11% sulfuric acid, 8% sodium bifluo-137

ride, 5% ammonium bifluoride to the microscope coverslip for a duration of 1-3 seconds, followed138

by thorough washing with water. This etching and cleaning process was repeated 5-10 times to139

generate dense phase scatters on the surface. Subsequently, the etched surface was gently rubbed140

with silk cloth to impart a positive charge. Carbon nanoparticles were then deposited onto the141

etched surface using a negatively charged printer roller.142
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4 Supplementary Note 4: Details of the high-level semantic analysis.143

Cell segmentation. We employed U-net to implement white blood cell segmentation, as shown in144

Fig. S5. The training dataset was from the Jiangxi Tecom Science Corporation 46, and we extended145

the dataset to 2700 through translation and rotation. We used L1 and L2 mixed loss with equal146

weight and Adam optimizer to update parameters. The batch size was 128, and the epoch was 500147

with a learning rate from 2× 10−4 to 6× 10−6. We implemented the training in PyTorch 1.8.1 and148

NVIDIA 2080ti GPU for about one day.149

Skip Connection
Input Output

Downsampling

(Conv + BN + Relu)

Upsampling

(Conv + BN + Relu)
Conv + Tanh

Figure S5: U-net architecture for white blood cell segmentation.

Cell virtual staining. We used the cycleGAN with phase attention guide to realize cell virtual150

staining 19, as indicated in Fig. S6. It contains two generators GAB and GBA to realize the predic-151

tion between the reconstructed wavefront A and the virtually stained image B. Each generator has152

a discriminator (DA and DB) to distinguish the real and fake images. We utilized dual-channel im-153

ages comprising both amplitude and phase as the input for CycleGAN. Specifically, the generator154

GAB in our network consists of nine pairs of downsampling blocks followed by nine up-sampling155

blocks. The down-sampling blocks in the phase path serve as multiscale attention guidance for the156

feature maps in the intensity path. This approach allows us to leverage the phase information to157
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guide the virtual staining process effectively. The loss function is158

loss (GAB, GBA, DA, DB) = LGAN−AB (GAB, DB, A,B)

+ LGAN−BA (GBA, DA, B,A) + λ1 × Lcyc (GAB, GBA)

+ λ2 × (1−msSSIMg (GAB(A), A))

+ λ2 × (1−msSSIMg (GBA(B), B)) ,

(S19)

where LGAN−AB and LGAN−BA are the adversarial losses, Lcyc is the cycle consistency loss.159

msSSIMg presents the multiscale SSIM loss between the green channel of the stained images and160

the reconstructed amplitude. The generators are U-Net with nine upsampling and downsampling161

scales. The discriminators are PatchGAN classifiers.162
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Figure S6: Architecture of cycleGAN for virtual staining.
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5 Supplementary Note 5: Quantitative comparison of data volume requirement and expo-163

sure time.164

Exposure times of Kramers-Kronig-relations holography. Figure S7 shows the result of CI-165

CDNet under 1 ms exposure time and the results of KKR direct reconstruction under different166

exposure times. The PSNR and SSIM indexes validate that the reconstruction quality of CI-CDNet167

under 1 ms exposure time is better than the result of KKR under 10 ms exposure time, and is close168

to the result of KKR under 50 ms exposure time. Thus, CI-CDNet reduced more than one order of169

magnitude in exposure time, which is more practical in low-light imaging.170
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Figure S7: Quantitative results of Kramers-Kronig-relations holography under different exposure

times. The reconstruction results of CI-CDNet under 1 ms exposure time are close to the results of

KKR under 50 ms exposure time.
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Data volume requirement of lensless coded ptychography. We also compared the data volume171

requirement in lensless coded ptychography. Figure S8 is the results of different data volumes172

(quantified by the number of captured images). The PSNR index indicates that the reconstruction173

results of CI-CDNet using 50 images are better than the results of ePIE using 500 images. Thus,174

CI-CDNet reduced about one order of magnitude in data volume requirement.175
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Figure S8: Quantitative results of lensless coded ptychography using different image numbers.

The reconstruction results of CI-CDNet using 50 images are close to the results of ePIE using 500

images.
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6 Supplementary Note 6: Additional simulation results.176

We make a series of simulations to explore the latent coupling information between amplitude and177

phase and demonstrate the effectiveness of CI-CDNet. We used the DIV2K dataset to compose 450178

complex-domain test datasets. These data were resized to 1024 × 1024 pixels, and added random179

noise to the real and imaginary parts, respectively. The general complex wavefront can be indicated180

in Eq. S1.181

Simulation results with multi-source noise. In order to explore the latent couping information,182

we first select three paired data in the 450 test dataset and show their visual comparison in Fig. S10.183

We can see that there are obvious same features in the amplitude and phase, as shown in the red184

arrows of the first data, which means they are correlated. The conventional real-domain denoising185

algorithms (BM3D and Real-NN) can not remove the crosstalk, resulting in unsatisfied denoising186

performance. Although the phase image of CD-BM3D is better than real-domain techniques, the187

amplitude has no advantage. In contrast, the reported CI-CDNet is able to take full advantage of188

the amplitude-phase correlations, obtaining the best performance of both amplitude and phase.189

Then, we quantitatively compared different enhancing methods in all 450 test datasets, as190

shown in Figure S9. Figure S9 (a) is the amplitude results of different methods. Figure S9 (b) is the191

phase results. Figure S9 (c) is the running times (s). The quantitative results of PSNR and SSIM192

further validate the satisfactory performance of CI-CDNet. The running efficiency of CI-CDNet193

also outperforms the competitive algorithms. It only requires less than 10 s to process the 450 test194

data, which is a thousandth of BM3D.195
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Figure S9: Quantitative results of 450 test dataset which added random multi-source noise. (a) -

(b) PSNR and SSIM indexes of amplitude and phase. (c) Running time (s) of different methods.

21



Mixed Noise

Noisy Image BM3D Real-NN

CD-BM3D CI-CDNet Ground Truth

Noisy Image BM3D Real-NN

CD-BM3D CI-CDNet Ground Truth

Noisy Image BM3D Real-NN

CD-BM3D CI-CDNet Ground Truth

Noisy Image BM3D Real-NN

CD-BM3D CI-CDNet Ground Truth

Noisy Image BM3D Real-NN

CD-BM3D CI-CDNet Ground Truth

Noisy Image BM3D Real-NN

CD-BM3D CI-CDNet Ground Truth

A
m

p
li

tu
d
e

P
h
as

e
A

m
p
li

tu
d
e

P
h
as

e
A

m
p
li

tu
d
e

P
h
as

e

CI-CDNet

Noisy Image

Noisy Image

CI-CDNet

CI-CDNet

Noisy Image

CI-CDNet

Noisy Image

Noisy Image

CI-CDNet

Noisy Image

CI-CDNet

8.68

10.27
9.08

14.21

17.71

0.16

0.3

0.21

0.36

0.57

 PSNR (dB)

Noisy Image BM3D Real-NN CD-BM3D CI-CDNet

 SSIM

9.02
10.05 10.23

14.33

19.73

0.11

0.29
0.25

0.29

0.55

 PSNR (dB)

Noisy Image BM3D Real-NN CD-BM3D CI-CDNet

 SSIM

9.46
10.53 10.5

14.9

23.38

0.18

0.29 0.3

0.4

0.77
 PSNR (dB)

Noisy Image BM3D Real-NN CD-BM3D CI-CDNet

 SSIM

9.27

16.86
17.6 17.48

20.77

0.2

0.55

0.62

0.5

0.73 PSNR (dB)

Noisy Image BM3D Real-NN CD-BM3D CI-CDNet

 SSIM

12.81

18.37
17.59 17.58

23.11

0.17

0.45 0.46 0.47

0.61
 PSNR (dB)

Noisy Image BM3D Real-NN CD-BM3D CI-CDNet

 SSIM

14.61

21.24
22.83

21.62

26.91

0.32

0.77 0.78
0.75

0.87
 PSNR (dB)

Noisy Image BM3D Real-NN CD-BM3D CI-CDNet

 SSIM

ROI

ROI

ROI

ROI

ROI

ROI

196

Figure S10: Visual comparison of different methods under random multi-source noise.
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Simulation results with Gaussian noise. Then, we added three levels of Gaussian noise to the197

450 test dataset which is quantitated by noise variance (30/255, 50/255 and 70/255). Figure S11198

presents the average PSNR and SSIM results of different methods using 450 test datasets. Figure199

S12 and S13 are the visual comparison. We can see that the reported CI-CDNet still outperforms200

other methods in both noise suppression and detail maintenance.201
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Figure S11: Quantitative results of 450 test dataset which added Gaussian noise (quantified by vari-

ance 30/255, 50/255 and 70/255). (a) and (b) are the results of amplitude and phase, respectively.
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Figure S12: Visual comparison of different methods under different Gaussian noise levels (Group

1).
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Figure S13: Visual comparison of different methods under different Gaussian noise levels (Group

2).
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7 Supplementary Note 7: Additional experiment results.204

Additional results of Kramers-Kronig-relations holography (5 ms exposure time).205
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Figure S14: Additional results of Kramers-Kronig-relations holography under 5 ms exposure time.

(a) Results of Siemens star. (b) Results of papillary thyroid carcinoma slide.

26



Additional results of Fourier ptychographic microscopy (0.25 ms exposure time). The FPM207

reconstruction utilized 225 low-resolution images, and the abundant images provided robustness208

to fight short exposure time. Thus, the exposure time of 0.25 ms undermined the advantages of209

CI-CDNet compared with the exposure time of 0.15 ms.210
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Figure S15: Additional results of Fourier ptychographic microscopy under 0.25 ms exposure time.

(a) Amplitude results of the USAF resolution test chart. (b) Amplitude and phase results of blood

smear. (c) Qualitative results of blood smear. The left histogram shows the PSNR and SSIM results

of amplitude. The right histogram shows the PSNR and SSIM results of the phase.
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8 Supplementary Note 8: Comparison between CI-CDNet and dual-channel real-domain211

neural networks.212

We compared the reported CI-CDNet with the dual-channel real-domain neural network. Specifi-213

cally, the dual-channel real-domain neural network had the same U-net architecture as CI-CDNet.214

The amplitude and phase images were input to a dual-channel network as two independent chan-215

nels without any connection. Besides, we further compared CI-CDNet to the dual-channel network216

with double the parameter to eliminate the effect of parameter numbers.217
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Figure S16: Comparison to dual-channel neural networks on simulation data.
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Figure S16 presents the simulation results using the data of Fig. S10. Figure S17 presents218

the experiment results using the data of KKR holography under 1 ms exposure time. We can see219

that the dual-channel network obtains better performance for phase images. However, it has little220

improvement for amplitude images. Besides, there are no obvious advantages to using double221

the parameter in the dual-channel network. In contrast, the reported CI-CDNet outperform dual-222

channel network methods with higher fidelity and resolution in both simulations and experiments.223

Quantitatively, the PSNR index shows that CI-CDNet has ∼6.2 dB and ∼3.2 dB improvement of224

amplitude and phase compared to dual-channel networks.225
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Figure S17: Comparison between CI-CDNet and dual-channel neural networks on experiment data

(Kramers-Kronig-relations holography). (a) Results of Siemens star under 1 ms exposure time. (b)

Results of papillary thyroid carcinoma slide under 1 ms exposure time.
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